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This paper provide; a formal analysis or a powerful inapping technique known as scatter deccomposi-

tion. Scatter decomuposition divides an irregular computational domain into a large number of equal sized

pieces, and distributes then% modkilatly amiong processors. WVe use a probabilistic model of workload in

one dimension to formally explain why, and when scatter decomposition works. Our first result is that, if

correlAtion in wor0kload saL conIVeX function of distance, then scattering a mnore finely decomposed domain

yields a lower average processor wurkloaci variance. Our second result shows that if thel ..orkload process

is stationary Gaussian and the correlation function decreases linearly in distance until becm~ling Weo

and then remains zero, scattering & more finely decosupooed domnain~ yields a lower expected maximzum

processor workload. Finally we show that if the correlation function decreases linearly across tile entire

domain, then amtong all mappings that assign an equal number of domnain pieces Wt each processor, scat-

ter decomposition minimizes themt~rage procesor workload variance. Thle dependence of these results

Oil thle assumption of docresinzg corelatlon is illustrated with situations where a coarser granularity

actually achieves beticr loaid balAnce.
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I introduction

Scatter decomposition [1], (also described as modular mapping (.4)) is an effective method for Prallelizing

a large class of irregular scientific programs that are tied to physical domains. Examples include a wide
variety .f techniques for numerically solving time dependent partial dilrcrential equations, and other, less

numerical domavin-oriented simulations. Scatter decomposition divides the domain into a set of rectangular

regions with the same spatial size and geometry. The regions are labeled using Cartesian coordinates, and

arc mnppcd to processors by applying the mod function to the label in each coordinate. Fer example, Figure

I shows how a two dimensional irregular grid for a PDE is decomposed into strips (marked by the heavy
lines) and assigned to proc.essors. The execution of all workload related to a subregion is a basic unit of

schedulable work which we call a cluster. A cluster's granularity is controlled by the parameters defining the

region size, in this case the strip width.

Scatter decomposition's success lies in its ability to balance workload without ever actually analyzing it.

Any region of high workload tends to be subdivided and distributed anmng processors. Scatter decomposition

is a technique applied to many problems in many contexts (1, 2, 4, 5, 9, 11, 1.1, 17). Its succeu has been

explained informally in [1] and [4], by appealing to the physics and numerics of many scientific computations.

W. these explanations suffice for most pra,.titionero, the literature lacks a full formal analysis of why scatter

de -mition balances workload. This paper provides some such analysis, identifying model assumptions

under which scatter decomposition c.ian be expect.:d to effectively balance load. As such, nur work is a

necessary prerequiisite for any future for:wI treatient of the very important problem of managing the

inherent tensions between load imbalance and communication costs in a scatter decomposition.

The object of this paper is to construct and analyze a performance model to explain when and why scatter

decomposition works. The model is based on a number of simplifying assumptions to promote tractability.

As such, it should not be view-,d as a model that. accurately predicts performance quantitatively. Rather,

it should be viewed as a model that explains perri)rmance qualitatively, Specifically, we model workload in

a one dimensional domain as a continuous second-order stationary process. This means that we associate

a random workload with every point in the domain, assume that the mean workload at every point is the

same, assume that the workload variance at every point is the same, and assume that the covariance between

the workloads at any two points is uniquely determined by their distance. The model takes the domain to

be divided into some n = 2d clusters of equal size, mapped modulirly onto P = 2P processors. Throughout

this paper we take P to be fixed, and d > p. The degree of the decomposition is defined to be d. Given one

scatter decomposition, another of higher degree ca- be constructed by splitting each cluster into two, then

by modularly mapping the resulting set of clusters.

We derive three nain results, each of which has a different set of assumptions concernng the correlation

function.



1. Asum~ptioni. The correlationl fuinction is convex. Result. Increasi, , the degree of it scatter deccompo-
sition does not increase the common processor workload marince.

2. Assumnptions. The workload process is 5stionary anti Gxwssianl. Thle uorred'ttioii fillictioll decreases

linearly uintil reaching zero, thenl remais zero (an elbow funictioni). Resunlt. There exists a degree

do, such that if Ito :5 Il < d2, then the expected maxinwm processor worklomad :cer a scatter

decomlposition of degree 112 is Ito larger than~ the expected maximum processor workload uinder A

scatter dCcomlposition) or degree III.

3. Assianphion. The correlation functtioni decreases linearly across Lte entire d10omain. Recsult. For any

number of clusters 21, among all mnappingsi that nssign 2-. cluitcrs per processor the modula.r mapping

inimizes the average processor workload variance.

Performance ul1timlately is mecasured inl termls ofrfinlishing time.c so thntt thet eXpected load of tlie "lost,

liwavily loaded processor is An Appropriate metric. one or our reults addresses this mectric directly. Average
processor workload rariance is a secondary mecasure, although intuition does suggest that dccrcasing the
variance while keeping thle inanu constant will decrease thle "expeted maximumlil. Conlsequr~tly, All thesce
results confirm our intuition that m~odularly mapping increasingly finer grained workload leads to better

load balance. It should be noted that increased communication overhead is thie p~rice paid for this balance,
anld is a cost we do0 not include in this model. One shmuld not interpret these results as &-lying that better

overatll ptrformance canl Always be achieved by increasing the dcgree. Par a given dlomain, thlme will be anl
optimal degree that balances the conflicting goals of low communication costs and good load balai.ce.

A brief Analysis of scatter decomposition call be founud in (15). hlowever, that analysis assumes stati"Sical

independence between all cluster workloads, and seems to consider thle effects of scatter decompositici, .
A given architecture as the problem size is increased. As such it is anl inappropriate model for studying tile

Cffects, of Changing thle mnapping Or a Single given probein. TReatmnis of other problemns have used stochastit
niodels of vturkload to estimate the expccted finishing timec, but invariably those mnodcls concern statistically

independent workloads, e.g. thle analyses in [3) and [0). These results are inadequate for analyzing scatter

de~composition. WThen all workload is independent, then Aggregated workload is independent, and there is
nto performance benefit to be gained by scattering. Scatter cdecomposition is succesful precisely because Lte

workload is not independent. Our contribution is to propose and analyze a model that includes workload

correlatiun, and explain whly increasingly finer partitions mapped modularly tend to balance the load better.
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2 Analysis

III this section we study a probabill~tic :uoded of worklo-W, And thlt pcriorinnoce of diffmoet nmping. For

thle s-Ake of simplicity we colltrainl our model to beo~in~t~n) This assumption dots not ncsAte

thle utility of thet mode4l; ally mliin sia ptobkml pa-itioncd ilito hyptr-st:ips call be viewed sis a

on~dntnsonlproblm. S11,11 parlitions greatly simlplify tilt woraniimning lieeded to VxchnelittfilormnAtion

between processors. In fact, our experienice inl ma1ppings t laidbatlg Ailnulation using scatter decompolitionl

was that, strapl partitions Ilmlinlixed tilt exection tiomw (10). Tho, wl ilso our experience in mopping A%

regular scientific codt ollto tilt I111l itPSC/1 (10).

Our ainalysis couccrns the effect, of scatter decompsc-Ai.'1 of) lowd bxAlaI, tho -lbVnce of colut-
nlicAtion or synchronization costs. By understandillg how h~id balance in is latiln is Jfetted LY tilt dc-
Colnpositionl/ntappings decisions. we are betttr able: to tumiitstand thle tensioln bcteen load imbalance And

com~~amicaion/yncronsato veads. The model we use is intendoil to be descriptive, rather than

predictive; thle analysis is qualitative rather thtn qualttitative. We doubt, that the end bedItRS of fittings a
model to performance data will justify tilt costs or dioing so. Neeteeswe reel there is worth, in, formally
Affirmings thlt intuition behind scatter decomposition.

2.1 When and Why Scatter Decomposition Workz

Our mnodel explains the success of scatter decomposition by showitg thAt it induces correlation between

processors' workloads. To see the perf~rmancc birnefits of correlated worklo,%ds, imnagint that a randoni
workload is generated and partitioned so that tile aine %mount of work it assigned to every processor, A
processor's workload is random, but all proce~sors always finish at tlie same time, because their workloads

are perfectly correlated. This situation is optimal, becauie all processors are busy all the time. Now
imagine that the workload at every point is statistically independent of any other. No muatter what the
domain decomposition or mnapping, processor workloads are statistically independent. InI fact, thle expected
maximum processor workload is thle samefl regardless of granularity, so long as the saine volume of t'lnain

is assigned to each processor. The "ideal" of rrandomn but highly correlated processor workloads cannot be
achieved in this artificial scenario.

Scatter decomposition works because irregular %vorkloads Are not statistically independent: high workload

tends to appear in contiguous regions. A sufficiently fine-grained decomposition will split the region up,

modular assignment will spread its workload around. The contribution of that region to one processor's

workload is highly correlated, with the contribution of a nearby region to a different processor's workload. If

the underlying workload is highly correlated in nearby regions, then scatter decomposition induces correlation

between processors' workloads. We have observed this phenomnenon in our own experiments with a one-
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dihiess'n. fiti flow coispustatin wsing, ldaptiv& griddisr. (11). The fluids problem exhibits irregultr grids

giimiltsr to t11sM Ill Figrpit 1.
F"r a givon problem, the Sample ftocorr¢htios fisctios [12](p. 437) is , statistical tstitnate of correlatlon

betwel poinst wotklolds', s f nction of the distnce betw-een thei. Autocorrelalons rang betwetn 1

4nd -1; thie hrter tit autoKorrehition. th mot similar the workloads of two points ata. given distance id

to be. Zero correlation implis statistical indcpcndence; increasingly negative correations imply Increasing
disimilarity betwen workloads. Figura 2 shows the sanple autocorrelation functiou at one time.wlep Int a
fluid Iow computation. Not only dot. correlation dm1inish a.t faunction of distance, it can restonAbly be
1Wvj+d as a convex "elbow" fllitios () = 02 lwsx(0. I - ot) over an appropriate range or t, and some

na_ 0. This corresponds nicely with Owo of our rtsults, one of which as.umeS elbow corre ation, the other of
whils am .lues a Convex correlation i1111tom1.

There .re situations where scatter decomposition will not work well. Coilsider a one dimensio1 l domain
discretiztd into 1000 points, numbered betwe.n 0 a md 900, to be mapped onto ten processors. Randomly

choose some "b.u" unuber 6 r (0, 9), and nihginte that, every hundredth point beginning with 6 has A

compttional cost of 1000, while tll other points have a computational cost of 1. If one evenly divides the

domain into ten subregions and maps them modularly, every processor has 1009 units of computatio to

execute. Scatter it decomposition of twenty subregions, and half the processors each have a computational

cost of 2008, while the other hIalf each have a cost of 100. Modularly assign each P'Oint individually, and

procesuor (6 moil 10) has a cost of 10090, while every other processor has a cost of 100. In this situation

mapping increasingly finer-grained workload leads to decreasing performance. Due to b's randomness this

workload model hc stochastic, and is second-order stationary. Two points at a distm.ce 100m for nu = i,...g 0

will always have the same workload. The correlation function at all distances 100m consequently has value

one. It has some fixed smaller value for all other distances. 'The principle reason this problem defeats fine-

grained scatter decomposition is tile periodicity. One should be extremely careful using scatter deompoition

in the presence of strong periodic behavior, if there is any chance that the periodicity of tile modular mapping

can align with the periodicity of workload. 'The assumptions of the models we study do not admit periodicity.

2.2 Model Preliminaries

ve consider the behavior of a computation o'er a real line interval, divided into 11 clusters, and mapped onto

P processors. Both im and P are taken to be powers of two, ant! im > P. We are interested in time average

processor work!c.ad variance, and in the expected workload of the processor that takes the loi.gest time to

complete. Without loss of generality we take t.he real interval to be [0,1]. Assume that every point p E (0,1

has a certain work intensily lV(t). The time required to process [a,b] is the integral of IV(t) from f = a to

= b. We assume that the intensities IV() are unknown, but we are willing to model our uncertainity by
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4lasurnlu that, 11(t) is a random vriable, wnd that, IS() call be viewed as i Rcond-order stationary process

(13) over ( (0, 1). Thus we suppime that E(IW'(4)) = p for all ( . (0, lit that, VarlIV(t)) - for l1 10, 1),

and tha COVO((). IV(s)) deed only af I - $I. TO Clojhasile this point we wilt denote tile covolriance
function as Coo:([( - s1). These assuitoptions are reasonable if we ;ire unwilling or unable to d~frqvrcntt

betwen tihe likely beh vior of tlhe coulpulttioll at i and at s. We do not I sune (hat IV(t) 11"(s). we

- j £ll'(oWI( )J dt d# - (6, - ) ,

lollowiuc a S ecompotiloe ine cl f er, • clster' workload Is T(i/n,(+ 1)/Wt), and is denoted
as c,(n). The ra do vc or of luster workload) is denote,. C(n) =<coO0,..

W\'e ares interestic the covrince matrix 4 for the iuster wc.kloads. Por i j we hve
Co(f+U*-1~1s)I u21. 1

COV°ei(n), cj(")) = (4 )j = t .[U+W/,C,,o(t - s) dt dI. (ch)ll", .Inl.

Vzr(ci(n)) is simply Ifnr[T(/n, (i + 1)/n)), given above. The sequence co(l)), ci (n),..., c1_ (n) is second-

order stationary, a fact, easily deduced from equations (1) and (2). To emplaisixe this we define the function

00i - I,' 1 = Cou[e,(,,), ch(:).

Note that €(0, n) is a cluster's variance.

An assignment or clusters to processors is described by a P x 71 assignment matrix whose ij-th entry

is I if c$(n) is assigned to processor i, and is 0 otherwise. Given assignment matrix A, the multiplication

AC yields a P x I random vector whose jth component is the sum of the execution times of all clusters

assigned to processor j. The vector of mean processor loads is the matrLx-vector product Apa, where ji,, is

the n element vector with It/n in each coordinate. The covariance riatrix of AC is the product AOr2 AT,
where AT is the transpose of A. The overall execution time is the maximum processor execution time, or

mnixf((AC) T). This quantity is random.



For any p ccssor P(, let .A(i) denote the set of clusters "ssigned to it under A, and 1L Li(A, n) be Pi's

random workload. By definition the variance of L(A.,r) is g:ven by

VnrL(A.,,)J = (.Ao..AT) 11

go 11 C,,+ 00 (I- k1,'.0. (3)

The first component of this expressicu is the sua of variances of all clusters awigned to Pt. The second

component, Is a sum of clufr couoriancc ferms (we will call these cc ter.s), that depends on the assignmi ent.

Similarly, the Covariance between processors L1(A, t) ami'd Lj(A,. it) Is given by a sum of cc terms:

Cov[L(A, i), !.j(A, a)) = F(1Q - .1, 11) (4)

The sum of all cluster covariance matrix terms alwiays equals the sum of all processor xvrkload vAriances
and covariances i

n-1 -I P-1P-1

(.=0Ja izO J.O

This implies a balance between processor workload variancets and covariances (and hence correlations); if by
changing A we reduce the average processor workload variance, then we are increasing the avcrge inter-

processor workload correlation.

The indices of the sums (3) and (4) have special structure when A describes a modular mapping. We

know that if cj(n) and ck(n) are assigned to the same processor, tlhen jj - kj is a multiple of P. Under a

modular mapping each processor will have n/P clusters. Among these there are n/P - 1 pairs of clusters

whose indices are exactly P apart, nIP - 2 pairs whose indices are exactly 2P apart, and so on. Since it and

P determine the specifics of the mapping we may drop the notational dependence of LI(A. it) on A. Under

the modular mapping we may write the common processor workload variance as

(nlP)-I

Var[L(n)] = (n/P)0(,O it) + 2 E ((nIP) - k)(kP, n). (5)
k=!

To consider processor workload covariance under a modular assignment take i < j, and consider a

cluster c.(n) assigned to processor P. It has cc terms with all processor P clusters c.(n) such that

la - m mod P = j - i or ja - ml mod P = P - j + i. There are ((n/P) - k) cc terms arising from clusters
whose indices are kP + j - i apart (for k = 0,..., (n/P) - 1); there are ((n/P) - k) cc terms arising from

clusters whose indices are kP - j + i apart (for k = 1,..., (nIP) - 1). We may therefore write

(nlP)-i (,,I)-1

Cov[Lj(n), Lj(n)] = I' ((n/P) - k)O(kP + j- i, n) + ((nP) - k)O(kP - j + i,n)
k=O k=1

tis conservation law proved to be invaluable when debugging detailed expressions for the processor workload variance and

covariances, e.g. (12) and (13).



T=e first) -stepist ((nw t /P) -i),a(kP + j - v) +

11 +"1

(n/P)-I

= ((iC/P) - -sj + c ,i). ()

2.3 Decreasing Workload Variance

Under very gener=l assumptions one c11n show that hncrcasing the degree of a scatter d€omposition reduces
the commonl processor workload variance. Tlhe ntccesssry assmlptions are that the workload process bc

seco (lorder stationary. and that its co .arindce fuctiont be covex.

'The frst step i 0 to show that ( - iI,:) is • convex function of i - ij over the range 1,2,,.. ,n - 1.

Ox 0+r
Trow dsisfec en assum e icrat e in xn dete )covxtipligta tedrvtveo(,z

wih= ri ll z ()Ic(t) dt n.

- I,, /+L,, Co,,c,- s,, d,,,'s

Cov~co~n)- cj-lnj futhrmr CouQ cl- ) =dl1'j - ilnCoeu entl -a)Cin) dt~ is anotr' been shown, a,-nd , is-. not neeed)
Weaki: r the derieati%'e with respect to: we find that

r(Couez + T/o l)- ou tw- t)) dea.

The difference being integrted increases in due to Co) convexity, implying that the derivative ofs(ne)
with respect to : increases in :-one charecterization of a convex function. By stationarity Cov[ci(n), €cj(n)] =

Cou[co(,) cl...l(n)]; furthermore Covcco(n), cl,...(n)] = I(n, Ii - il/n). Consequently Cou~cj(n), c1(n)] is a

convex function of I - i oe Ia- ij > 1 (it uy indeed be convex over the entire range, but that fact ha
not been sh~own, and is not needed).

We are inltereste.d in the effects of moving from a scattc- decomposition with degree d - ! to one with
degree S. To analyze these effects we make the following observation. Consider a domain partitioned into

S= 2d clusters, which is mapped by modularly a.signing pairs of clusters: co(n) and ci(n) are assigned to

processor 0, c2(n) and c3(n) are assigned to processor 1, and so on. This mapping is "dentical to the scatter

decomposition of degree d- 1; the pair of clusters c0(n), c1 (n) viewed from the d degree mapping is the same

as the single cluster co(n/2) viewed from the d- 1 degree mapping. We will show that the modular mapping
with degree d- 1 produces procesvor variances that are no smaller than those of the modular mapping with

degree d.

Split each cluster ci(n/2) into two equal sized clusters. The sum of the two split cluster variances plus
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twice their co €riance must equ.al tle 'iauce of ci(n/2). That is.,

00(, n/21 = 20(o, it) + 20(l, it). (7)

Simikarly, take two clu.ters c,(n/2) and cj(it/2), and split each into two equal s zed clusters. The total
covariance betwCen tihe four split clittrs must -equl the coatriance betwce, lhe two unsplit clusters. Thus

Q( - ii,. /2) = 20(21i - il, it) + 0(21i - il + 1, it) + 0(21j - il- 1, i). (8)

Note that the index %alie$ must double whel taken with, respect to it rAther than n/2 lusters.

Substituting the right-llnd.sides of equations (7) amd (.) into equation (5) and working through tie

',btbra, we find that
(.I(21))-I

Va[L(n/2)) (n/P)0(0, it) + (n/P)0(l, it) + 2 " ((./P) - 2k)(2kP,. )+

S ((n/P) - 2k) 10(2kP + 1, ,) + 0(2kP - 1,,1)).
Sa~l

Using this expre."ion and (6). we compute the difference Var[L(n/2) - Var[L(n)J. All terms involving

0(2kP. it) cancel, for k 0,...,. nf(2P) - 1. Each remaining term from Var(L(n)] has the form 2((n/P) -
2k- -l )0((2L- + 1)I., n), for k = 0,..., ./(2P) - 1. We split each such tern into tie sum (n/P - 2k)o((2k +

I)P.,t) + (i/P - 2k - 2) ((2k + I)P, i), and pair these with MarlL(/2)] terms as follows,

(I/(2P))-I
Var[L(n/2)) - Vnr[L(n)) = E ((i/P - 2k)C'(2kP + 1, it) - 0((2k + I)P, ,4) -

k=O

(/P - 2k - 2) (0((2k + 1)P, n) - 0((2k + 2)P - 1, it)) ). (0)

One characteristic of a convex function 9 is that for fixed V the difference 9(z) - g(z + y) is a decreasing

function of z. Every two terms we have paired differ in their index arguments by exactly P - 1, e.g.,

0(2kP + 1, it) and 0((2k + I)P, it). Since 0 is a convex function of the index argument once the index is at

least 1, we have for every k

0(2kP + 1, n) - 0((2k + 1)P, it) > 0((2k + 1)P, it) - 0((2k + 2)P - 1,.).

The left-hand-side expression in this inequality is weighted more heavily in equation (9) than is the right-

hand-side expression. It follows that Var[L(n/2)] - Var[L(n)] 2_ 0, proving our first result.

Theorem 1 Suppose the workload process ll(i) is second-order stationary with a convex covariancc func-

tion. Then increasing the degree of a scatter decomposition does not increase the processor worklond variance.
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2.4 Decreaising Expected IMsxinium Workload

&Next We demlons*trAtC circuMSIAncS wh~ere Increasing the degree or a scatter decomposition reduces the
expected w~orkload of tile most heavily loa-ded procesor. 'te argut::ent, -*A w show that under appropriate
assumptioam the corrclationt between any two processors' Workloads Increases as tile degree increases We
thenl cite a result froln (the literature prov'ing that thle expected manxinuil decreases ill this situation.

WVe assumne that tile wvorkload proces (11P(4)) Is a stationairy Gaussian procm2s (7]). Additivity properties
of tile Caussian thenl ensure that, thle vector ofni clusters hias ajointly normtal distribution (7](Cliapter 6) nd
that tunder any) Assignment, thle processors, workloads are jointly normnal. We 414o assulno that thle correlation
function is COUvQ) = V2 unax(0, I - att), where a = 2/m ?:I for some integers u, in *t 0. 'The restriction
onl a is used to simplify certain cAlculationls. 6 = /Ot is thle smalilest, distance i ait Which Coal(t) = 0. Our
results apply whlell thle degree It large enough so that subiterval (0,61 is partitioncd into at least, P =21

clusters. if thle degree is d. then thle number of clusters inl 19, 5 is 624. Now let do be thle least d such that
614 inod 21" = 0. Equivalently, do is the leakst integer if suchl that, ul,02,"-V is an integer. Clearly do :5 P+ U.
Our results apply when tile degree is at least do.

We canl compute fulnctio..sl forziu for (i - ii. it) given tis explicit dlefnition of Cov(L). Perrorming the
integration given by (2) one determines that

03

00i, - l.1)lf (10)

113

Given equations (10) and (11) we call compute processor workload variance and covariance under scatter
decomposition. General expressions ror these quantities are given by (5) and (0). For large values of k, some
terms lin those sumns vanish, being zero. Our assumption that thle Mcatter decomnpouition has dlegree do or
larger ensures that termns which vanish are easily characterized. 3 andl that, thome clusters whose indices are
exactly 6n apart are assigned to the samne processor. All e (k, it) termns in (5) vanish for k > 6ma/P; we have

5(kP, 11) = ff2a/(6113) for k = 6n/P. We may rewrite tile -atriance as

Var[L(n)J = (n1P) 02y -a3 + I (YiP - k) r 2n -a___+__ / - SnIP
k=1

2note that this assumption is stronger titan we laavc used so far, due b>oth tostationarity rather than secoaadordtrstAtionarity,

and due to thie assumption of a specific workload distribution
3Thiis is not the case for smaller degrees. A Is~rge number or special cases must be constructed and Analyzed. This task

seemed to us to be more tedious thtan is warranted by the anticipated correspondingly stroger result.

9



( I - 6) (2)

Cacu ation of this equality Is mutlt x .'ndfied with the u e of 4 symbolic mathematics package.

Tile procesor workloAd CoVri4nCe IS SlInilatly handled. Amsme that i < j, k = 6;1/P again delineiat

where 0 telm vanish: 0(kp + j - i. 11) =0 for aIl k : 611/P. Andi 0(kp - i + J' 0) = 0 for All k > .Sly/P. We

111y rewrite (6) as

Com4l.(,a). .j(,,) = (*ra/(,)/P)1( -0t- -+ 1o./?-- +

n IP) - - o( 1 l2 6(nP - + i))
Ila

(6 1 -2 1 (13)

"rite corClatlom betwee: Li(a) and lq(n) Is the ratio Cot4l(n), ,j(n))/VorL(n)). For all d > do we

obtain tie correlation using (13) and (12), And can treat the ratio as a continuous function of I]. It is

interating to note tht. As i increasts the correlation approAcht; uiaty. This supports our intuition that

partitioning the domain into increasingly filter clusters and mapping them modularly induces correlation

bctween prote..or worklods. lit fNct, the tendency towards unity is monotonic. Taking the deriv-ative with

respect, to it we find that the derivative is positive if

(4/3 - 26/3)(i - i) + 26/9 - 2/3 > 0.

'This inequality holds, since (4/3 - 26/3) >_ 2/3. Consequently, for all n = 2 > 240 we must have

CoulLi(2n), Lj(2n)J/Var4L(2n)I > Cou[L,(n), Lj(,)]lVar[L(,u).

Next we use this relationship to analyze the expected maximum processor workload.

The following result is based on the Normal Comparison Lemma [8j(p.81) a&ld is the key to our observ.

tions concerning the expected maximum processor workload.

Theorem 2 (Leadbetter at al.) Let o,..., k be standardi:cd Jointly normal rundom variables, and let

QO,... blhe landdrdi:ed jointly normal random variables, such that Cou(j, fl) :_ Cou(qj, qj) for each i,j,
i 96j. Thecnfor every u,

and hence

E[max{ o,...,~jj1 E> max{rjo, ... , })].

10
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The standardization of a random .variable X is the scaled random variable Z = (V - In)/$, where in

and S are X's menu and Standard Jtviation, respectively. Tle mem of st standardized randoin vAriable is

zero and its variance is one; the covarimnce betwi| two standardized random variablets is tlme correlation

bet,vecn their corresponding unstandardized forms. Let Zj(n) be the standardized workload of processor A'

given a domain of it clusters. Cov[Zi(i), Zj(n)) = Cov(Lt(n), Lj(rt))/Var[L(n)), which we have shown to be

increasing il it. If i > it (cquivalently, if one scatter decompoitlon has higher degree than another), then

he f expected maximum workload is
Eimax(LoCn). .. , p.. p-(n)}) = E mn< (L,(n) + Vo'[LC,.)":Z,,lI))

= ,/P +V,'or(L(n)j'" R I] x i()].

Theorem I shows that Var[L(n)J ?_ Var[L(2n)]; this along with inequality (14) proves our second result.

Theoremn 3 Let (W(t)) be a stationary Gaussian Process, with a covanncee function CoU(t) = 02 max(O, l-

ot), where a = 2"/i.n _ I for some positiuc integers ino, v. Let there be 2P processors, and let do be the

least iateger d such that uin24 '* '  is an intelcr. 1jd2 > dl 2t d0, then the trpectcd maximum processor

workload of a scatter decomposition with degrec d2 is no grotcr than that of a scatter decomposition with

degree dl.

2.5 Minimization of Average Workload Variance

Our final result gives conditions where for a given i,, among all "balanccd" assignntts-those placing n/P

clusters per processor-the modular mapping minimizes the average processor workload variance. To prove

this result we assume that the covarince function decreases linearly across the entire domain: Cou(s) =

02(1 - as), for some a satisfying 0 < a < 2. The result is based on a procedure that takes any assignment

and constructs another whose sum of processor workload variances is no larger. The I.peated application of

this procedure produces a modular assignment. Consequently, modular &signinents minimize the average

processor workload variance.

The arguments to follow specify individual covariance terms. These arguments are clearer using the

Cov[cj(n), cj (n)] notation rather titan (Ii-ij, n). It is straightforward to determine the form ofCou[c1(n), c (n)]

under the present assumptions:

Com ci(n),c1(n)] y(n - ali - i) if i - i[ > 0 (15)
-,(n - a/3) if Ij - il = 0

11



Let At be any assignmntl, matrix describing a bWlallred nssignient. Without logs of sener.lity, we

assunle that unde .A thle procesors are numbered so that. Po is IS nild co(f), P1, l aiiigned the smallest

indexed ci(n) tlat Is not as igtld to 11o, And ill general P1 is assigned the sm mallest indexed cluster that is

nt. assigned to aty of PaP,..... Pj-l.

We will sAY that cJ (n) Is in place if It is assigned to processor Pj m.d P. Note that all Clusters are in plice

under a modular aigulilgtlt. We construct another balanced assignmntn, ,A3 by finding the smallest, Indexed

ci(un) that is IlOL in place, and by putting It in plce. Let cj denote this cluster, let Ps denote tile slowrc

processor that has cj ider A , aild klt 1 dcoote the target processor PI m,j p. Lot c be the Smallest

indexed cluster assigned to Pr such that y > f. A2 is constructed flout At by giving cl to Pr, And cl to Ps.

Figure 3 illustrates these deiniition. We will prove that thei sum of procemor viriancts under A2 boinds

that sum uinder A, from below; consequently tle average workload variance under A2 is no gater than%

that under Al.

Recall that, under Any a4signmtnt, mtatrix A tle v-arince of Pi's work load is given by

1ar[L(A.,y)] = (A-7AT)j

- 1 Vor[cj(n)j + CoutC,,(),Ck(;,)J, (10)
¢liliilT~~l) ¢tl(n> Cl) A.(i) X(Qi

and that

Cov[L,(A, it), Lj(A, i,)) - 2 Cou[ck(n), cm(l)
<t&.c,.>E.A(IKA(j)

It is clear front (10) that the variance of any processor other than Ps or PT is by unaflected by swapping Cl

and cl. To plrove tha desired result we nieed Only show that tle swap (lots not increase tle suill of Pr ild

PS variances. The change in processor variances caused by the swtpt is entirely ile to changes in the lull of

cluster covariance (cc) terms in each processor. After swapping cj and c,, each cluster ci(n) assigned to PS

loses the cc teri Covcj(n),c¢(n)] and gains the term i oall c (n),ci(n)). We let AL. denote tle suln of all

such changes among clusters in PS to the left of c, and let LS denote the iumber or such clusters. Simnilarly

An, denotes the sum of changes antong clusters in Ps to Lite right of c1 and Rs denotes the number of such

clusters; A. t, denotes the sum of changes among clusters in Ps with indices bt:tween f and g. Expressions

for these quantities are derived using equation (15):

AL., (3(Cov[c,(n),c,(n) - Cou(c'(n),ci(n))) =--(g - f)Lscr;
2 ( 5l ) Ei

i<f

AAM$ = Ck~o[o(.) ()] - Gov[cj(,,), C,,)]) = U (2 C- f- g)ck.
j(" (")E-1(S)

f <k<; f<k<gj

12



The clange in Ps's vr.rimnce after the swap is the sum A,8 + Aort, + ARs.

We. can similarly describe the ch inge in P 's v iriance with the defilitions
C

2

= (Covcj(,),(,,)l- Couc,(,) 1c,(,)]) = -(9 - J)tr

P1

Io term analogoous to A,( is necessary since there are no clusters in Pr with indies between f and g.
The change In the sum of Ps's variance with Nr's variance Is given by the sul of l the A terms

defined above. We will show that the sum of A terim is bounded from above by 0. At this point a n'unbcr of

obsernvtions are userfil. Since all cj(n) with i < f are in order, it follows that L? -5 4S. Thus 'riA +A.r - 0.
iL remains to show that A, + A tr + AM, < 0. We know that

At14 + Alfr = - Is)( -/)c(17)

furthermore, since ni/P = L,,+Rr+ 1. we must also have Rs :5 Rr. We proceed to show that the mognitude

of A. g, is no greater than the magnitude of (17) and consequently prove the larger result.

.A = n/P - Ls - Rs - 1 is the number of clusters in Ps whose indices lie strictly between f and g. A.%,
is na.iimized when the indices of these clusters are as large as possible; when k - t.- - 2,... ,9- m.

With such indices, the sum of c1 's cc terms in Ps is

1 =l2

Likewise, the suni of c,'s cc terms in Ps is

~,' C,- (g - f - 0)
i=1

From tis, we see thnat A, j, wh~en maximized can be written as

L =1 i=1 f

But note that

ill n/P-Ls-Rs-1

< ni l -T - l

= (n/P-LT- T-1)+(RT-Rs)

= (RT- RS),

13



so that

Ai + MRr + Ats = 2 (-(R- - Rs)(g - ,)o + Fr. (i -f)o) <0.

Consequtntly swapping c1 and ct does no. increase the sum of I'S and Pr's vAriance. Furthermore, tile

swap dots not affect the sum of other processors' variances. Repeatedly applying thils precedute puts every
cluster in plac e, which is the modular assignment. This discussion has proved the following theorem.

Theorem 4 Let {W(t)) 6e a second-onrer stationary process, with a eov'riacec mnretioa Coy(s) = a7(! -

as), where 0 :5 ot :5 2. 11 P and n be given suck that P divides n evenly, and let A,%t be the P X it

ossignmint matriz dscribing the mtodular mapping. Then for any P X n assigneiant mntrit .4 describing a

balanced assigninent,
P-I P-I(1/11)  {.A,j.'<,A ), _.< (11P) {.a,2.X),.
1.0 iuO

In tile event that the workload process is Gaussian and stationary, we cal show tlt increasing the degree

reduces tile expected :aximum processor workload. We determine tile processor variance and covariunce

under scatter decomposition by substituting the values given by (15) into (5) and (11). Assume that i < j.
Working through the algebra one determines that

,ar[LCt)Ju 2 (1 - Op3+ 0(1 - lIP))

and that co [,C..L,,,) = (1 - o,/3 + or,,=
Cot4L.(n). Lj(n)] a P2 (3n7L + 32

The derivative with respect to n of C[Lj(n), Lj(n)]/'nrL(n)] is positive if

(4/3 - 2*/3)(j - i) + 2or/9 - 2/3 > 0.

This is always true over th, range or 6 (0,2]. Consequently the same arguments used to prove Theorem 3

can be applied here.

3 Summary

Scatter decomposition is an attractive method for mapping domain-oriented computations with irregular

workloads to parallel architectures. Scatter decomposition partitions the domain into n equal-size pieces,

and maps them modularly onto P processors. This paper uses a formal probabilistic model of correlated

workload in a one-dimensional domain to explain why and when scatter decomposition works. First, i'.e

show that periodicity in workload correlation can lead to load imbalance under scatter decomposition if the

14



Correlation period alislis with the period of the modular matpping. Consequently we consider ,nouperifedic

workload correlation functions.
Our first result Alhows thlat if workloaid correlation is it convex function of distance, then scattering with

inicreasingly finler grainled clusters decreaits a processor's worklond variance, thereby increasing the Average

anter-processor workload correlation. Since. thle processor workloid mnean is unaffected by this chaiyge, one
nticipates that the exNpected illaxitnun workload will correspondingly decrease.

Our second result afirmls this intuition under k stronger set of assumptions: the workload process is
Caussianl, and the correlation function decreases linearly in distance until it reaches zero and then Stays at

z.ero. We thent show that once a ceatter decomposition is sufliciently fine-grained, inaking the grain-size finer
reduces thle expected maximium processor worklotid.

Our third result shows that under slightly different assumptions still, among all possible "balanctd"
intppings scatter decomposition minimizes the average processor workload vanriance. This result depends onl
thle correlation function decreasing linearly across thle entire dlomain. In this case it is also true (lhnt if tha2
workload process is Gaussian, then scattering a finer-grained decomposition reduces the ex(pected maiximiuml

processor workload.

'These analytic results serve to formially verify thle intuition behind scattor decomposition. However,
thle results Only concern load bailance. The additional communication cost of decreasing granularity is
not built into this model. Extensions to this work might find the optimal granularity by determining
a quantitative estimator of the expected miaximium workload and thle expected communication cost as a

functioun of granularity. Ani overall execution time model wouid be constricted depcnding onl the influence

of architecture onl tile communication costs, and then optimized.
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Figure 3: Clusters swapped in variar~ce vninimzation argument
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